
Martin Phillips
Ladybridge Systems Ltd

Data Collections
Welcome to the Fourth Dimension

(and beyond)

International Spectrum Conference, 2014

Multivalue – Are we at its limits?

We all understand the power of the multivalue
data model

Discarding the First Rule of Normalisation gives
us simpler, faster and more maintainable
applications than relational databases

Today’s data may extend beyond the three
dimensions that multivalue provides

XML and JSON may go much further.

JSON – JavaScript Object Notation

JSON defines data as a character string
holding name/value pairs

JSON allows unlimited nesting of objects.

Multivalue has excellent string processing

It is not hard to write a JSON parser or update
tool

Achieving good performance may be much
harder.

JSON – JavaScript Object Notation

We need to separate JSON as a data
representation for transmission or storage from
the need for efficient processing of arbitrarily
multi-dimensional data in an application

JSON is an external representation of our data

Technology moves forward. JSON may be
replaced by some new format in the future.

Data Collections

QM supports Data Collections as arbitrarily
multi-dimensional sets of name/value pairs

Perhaps other multivalue vendors will follow

Any apparent similarity in some concepts to
MongoDB is coincidental.

Data Collections - Data Types

Multivalue Basic uses type variant data items

JSON objects hold values with distinct data types
– Strings
– Numbers
– Booleans (true, false)
– Null

Data items can be grouped into
– Single dimensional arrays
– Nested objects

Data collections must support all of this (or more).

Data Collections

A data item within a data collection may be of any
QM data type

Some types are probably irrelevant but all are
supported

Because a data collection is itself a QM data type,
data collections can be nested to any depth.

Parsing JSON into a Data Collection

The JPARSE() function creates a data collection
from a JSON string

VAR = JPARSE(JSON.STRING)

Parsing a realistic complex JSON string with 2600
items takes about 650µS on a 2.7GHz PC.

Accessing Data in a Data Collection

Referencing a value in a data collection is very
similar to referencing a dynamic array

Instead of numeric positions (field, value,
subvalue), we use element names

ITEM = VAR{name}

We can use a quoted constant, a variable or an
expression for the name.

Accessing Data in a Data Collection

To access a value in a nested object, we need two
or more names

ITEM = VAR{name1, name2}

This is no different from accessing a value
position in a dynamic array

Because a nested object is just a data item, we
could do this as

ITEM = VAR{name1} {name2}

Element Paths

We can also use an element path in which the
names are separated by forward slashes

ADDR = VAR{“client/address”}

This is useful when the structure of the data is not
fixed

The different syntaxes can be mixed.

Building a JSON String

The JBUILD() function builds a JSON string from
a data collection

JSON.STRING = JBUILD(VAR)

It is important that parsing and rebuilding a JSON
string should produce a result that is equivalent to
the original data.

Numeric Values

JSON provides several formats for numeric data:
123
123.00
1.23E2
12300E-2

In QM, all of these will be held in memory as
integer value 123

Floating point values are used where necessary

Building a JSON string will produce equivalent
values but perhaps not the same format.

Boolean Values

Multivalue uses 1 and 0 for True and False

It is not acceptable that parsing a JSON true value
and then rebuilding the JSON string replaces it
with a numeric 1

Since release 3.2-2 (October 2013), QM has
supported an internal Boolean data type

This is completely compatible with use of numeric
values, converting as needed.

The Null Value

QM release 3.2-2 also added the SQL style null
value data type

Values can be set or tested as null but dynamic
operations on null items is not currently
supported.

Working with Data Collections

An empty collection is created with

CLIENT = COLLECTION()

Or another collection is copied with

CLIENT = COLLECTION(OTHER.CLIENT)

Copying a collection variable gives a second
reference to the same collection, not a copy

CLIENT = OTHER.CLIENT

This is similar to file variables and some others.

Working with Data Collections

The member names in a collection can be
determined using ENUMERATE()

NAMES = ENUMERATE(VAR)

Nested collections must be enumerated
separately.

Modifying Data Collections

Members of a collection can be added or updated
using

CLIENT{‘name’} = CLIENT.NAME

Alternatively, a modified form of the INS statement
can be used

INS CLIENT.NAME AS VAR{‘name’}

Modifying Data Collections

Intermediate levels are inserted automatically (just
like dynamic arrays)

CLIENT = COLLECTION()
CLIENT{‘address/zip’} = ‘96439’

Modifying Data Collections

Members are deleted using the DEL statement.

DEL CLIENT{‘phone’}

Arrays in Data Collections

Collections can include single dimensional arrays

An empty array is created with

CLIENT{‘contacts’} = MAT()

A standard dimensioned array can be copied to a
collection

CLIENT{‘contacts’} =
MAT(CONTACT.NAMES)

Arrays in Data Collections

Array elements are referenced by using their
element number as the name

NAME = CLIENT{‘contacts/1’}

or

NAME = CLIENT{‘contacts’, 1}

Arrays automatically resize to fit the content

INS and DEL can be used to insert or delete array
elements.

Arrays in Data Collections

An element path may contain an asterisk as the
member name within an array to return a
multivalued list of element values

PRODUCTS = ORDER{‘detail/*/prod.no’}

Use of a second asterisk returns a subvalue list

SERIAL = ORDER{‘detail/*/serial.no/*’}

Data Collection Files

A data collection can be stored in JSON form in a
standard data file

The COLLECTION option of CREATE.FILE
creates a file in which the records are data
collections stored in an optimised format

Reading a record from the file creates a collection
variable

Data written to the file must be a collection
variable.

Data Collection Files

The dictionary of a collection file may only use a
field number (0) to reference the record id

Collection members are referenced using E-type
(element) dictionary items

These are like D-type but have the element path
in field 2

The element path may use the asterisk syntax to
return multivalued data.

I-type dictionary items are supported, including
TRANS() to fetch data from another collection file.

Data Collection Files

Data collection files may use:

•Indices

•Record level encryption

•Replication

•Transactions

•Triggers

Linked Data Collection Files

A string value in a collection can be used to
reference another collection record

“file:id”
or

“:id”

The EXPAND() function follows the link and
updates the data collection in memory to include
the linked item.

OK = EXPAND(VAR{link.path})
OK = EXPAND(VAR{link.path}, file.var)

Data Collection Files in Queries

The query processor can create reports based on
data from data collection files by use of E-type
dictionary items

The ELEMENT keyword can be used to reference
an item by element path if there is no dictionary
item

LIST CLIENTS ELEMENT ‘address/zip’

The Data Collection Editor

Use as a command or as a subroutine

Allows viewing and editing of collections.

Summary

Data collections allow us to process data that
goes beyond the three dimensions supported by
the multivalue model

The concepts that an application developer must
learn are very close to the dynamic array
operations that they already use.

QUESTIONS?

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

