
Martin Phillips
Ladybridge Systems Ltd

Object Oriented Programming
and Exception Handling

International Spectrum Conference, 2014

OO Programming and
Exception Handling

Why do we need this?
Most developers that come to the multivalue
environment from other programming languages
expect to find features similar to those that they
already know.

Multivalue Basic is an excellent language for
rapid application development with some very
powerful capabilities but may appear alien at first.

Object Oriented Programming
What’s It All About?

OO programming does not replace
“conventional” methods.

A new addition to the developer’s
toolbox.

An integral part of the QMBasic
language.

What Is An Object?

Subroutine:
Program operations that work on
supplied data.

Object:
Data that has associated program
operations.

Object Oriented Programming

What Is An Object?

Defined by a CLASS module.

The CLASS module is a container for...

• The persistent data definitions.

• The program operations that run
against this data.

Object Oriented Programming

What Is An Object?

An object is a run time instance of the
class.

var = OBJECT(“myobj.cls”)

There may be many concurrent
instances of the same class each with
their own independent data.

Object Oriented Programming

The Objref Operator (->)

References an element of the object.

var->name

var->(expr)

Object Oriented Programming

Persistent Data

Class modules may use common blocks
but these are shared across programs,
subroutines and object instances.

Class modules also have persistent data
that is separate for each instance and
shared data that is visible to all
instances of the same class.

Object Oriented Programming

Persistent Data

Private data...

-Not visible outside the class module.

-Hides internal operation of the object.

PRIVATE A, B, C(2,3)

Object Oriented Programming

Persistent Data

Public data...

-May be visible to programs using the
object.

PUBLIC P, Q, R(2,3)

PUBLIC X READONLY

Object Oriented Programming

Shared Data

Public or private

Shared across all instances of the class.

SHARED PUBLIC P, Q, R(2,3)

SHARED PUBLIC X READONLY

Object Oriented Programming

Persistent Data

Referenced from calling program:

result = var->item

var->item = 12

var->item(3) = 12

Object Oriented Programming

Public Subroutines and Functions

Program operations contained within the
class module.

May access or update persistent data.

Public subroutines store values or
perform tasks.

Public functions return a result value.

Object Oriented Programming

Public Subroutines and Functions

PUBLIC SUBROUTINE name
 ... Program operations ...
END

var->name

Object Oriented Programming

Public Subroutines and Functions

PUBLIC SUBROUTINE name(a,b)
 ... Program operations ...
END

var->name(x,y)

var->name(x) = y

Object Oriented Programming

Public Subroutines and Functions

PUBLIC FUNCTION name(a,b)
 ... Program operations ...
 RETURN value
END

p = var->name(q, r)

Object Oriented Programming

Public Subroutines and Functions

Variable length named argument lists...

PUBLIC FUNCTION name(a,b) VAR.ARGS
 ... Program operations ...
 RETURN value
END

Object Oriented Programming

Public Subroutines and Functions

Variable length unnamed argument lists...

PUBLIC FUNCTION name(a, ...)
 ... Program operations ...
 RETURN value
END

Object Oriented Programming

Public Subroutines and Functions

Access arguments by position...

ARG.COUNT()

ARG(n)

SET.ARG n, value

Object Oriented Programming

Dual Identity

A name may refer to a public data item
when reading and program operations
when writing...

...Or vice versa

Allows easy data validation or event
triggers.

Object Oriented Programming

Inheritance

One class may want to use the data and
public routines of another.

The inherited class remains a “black
box” where the outer class cannot see
how it works.

Object Oriented Programming

Inheritance

Static Inheritance...

CLASS name INHERITS other.class

Object Oriented Programming

Inheritance

Dynamic Inheritance...

obj = object(“otherclass”)
INHERIT obj

Object Oriented Programming

Inheritance

Dis-inheritance...

DISINHERIT obj

Object Oriented Programming

“Automatic” Handlers

CREATE.OBJECT

DESTROY.OBJECT

UNDEFINED (Subroutine / Function)

Object Oriented Programming

“Automatic” Handlers

CREATE.OBJECT

Run when the object is instantiated.

Arguments to OBJECT() are passed to
this subroutine.

Object Oriented Programming

“Automatic” Handlers

DESTROY.OBJECT

Run when the last variable referencing
the object is released.

Guaranteed execution, even at program
abort.

Object Oriented Programming

“Automatic” Handlers

UNDEFINED

Run for references to undefined names.

Both FUNCTION and SUBROUTINE can
exist.

Caller’s arguments passed, plus name.

Object Oriented Programming

Example Class Module

There is a standard class module in the BP
file of the QMSYS account to walk through
an alternate key index one record id at a
time.

Object Oriented Programming

Step 1 – Data Definitions

CLASS INDEX.CLS
 PRIVATE FVAR, INDEX.NAME
 PRIVATE ITEMS, NUM.ITEMS, ITEM.INDEX
 PUBLIC KEY READONLY

 ...Subroutines & functions go here...
END

Object Oriented Programming

Step 2 – CREATE.OBJECT

PUBLIC SUBROUTINE CREATE.OBJECT(FILE,INDEX)
 FVAR = FILE ;* Save file variable
 INDEX.NAME = INDEX ;* and index name

 ITEMS = “” ;* Id cache empty
 NUM.ITEMS = 0 ;* No ids in cache
 ITEM.INDEX = 0 ;* No next id position

 SETLEFT INDEX.NAME FROM FVAR
END

Object Oriented Programming

Step 3 – Fetch Next Id

PUBLIC FUNCTION NEXT
 IF ITEM.INDEX >= NUM.ITEMS THEN
 SELECTRIGHT INDEX.NAME FROM
 FVAR SETTING KEY TO 10
 READLIST ITEMS FROM 10 ELSE NULL
 NUM.ITEMS = DCOUNT(ITEMS, @FM)
 ITEM.INDEX = 0
 IF NUM.ITEMS = 0 THE RETURN “”
 END
 ITEM.INDEX += 1
 RETURN ITEMS<ITEM.INDEX>
END

Object Oriented Programming

Step 4 – Position at Specified Id

PUBLIC SUBROUTINE SET(VALUE)
 KEY = VALUE
 SELECTINDEX INDEX.NAME, KEY FROM FVAR TO 10
 READLIST ITEMS FROM 10 ELSE NULL
 NUM.ITEMS = DCOUNT(ITEMS, @FM)
 ITEM.INDEX = 0
END

Object Oriented Programming

Using the Class

OBJ = OBJECT(“!INDEX.CLS”, FVAR, INDEX.NAME)

OBJ->SET(VALUE)

LOOP
 ID = OBJ->NEXT
UNTIL ID = “”
 DISPLAY OBJ->KEY, ID
REPEAT

Object Oriented Programming

Exception Handling
What is an Exception?
An exception is a named event, often an error,
that can be trapped by an application in a
controlled manner.

Exception handling is based on the concept of a
TRY/CATCH block in which the TRY clause
contains program statements to be attempted
and the CATCH clause traps specific exceptions.

An exception is “thrown” by the program in
which it occurs.

Exception Handling
Example - No error handling
TOTAL += NEW.VALUE

If NEW.VALUE is not numeric, a run time error will
occur, aborting the program

Exception Handling
Example - Explicit error handling
IF NUM(NEW.VALUE) THEN
 TOTAL += NEW.VALUE
ELSE
 …Error action…
END

The developer must explicitly test for each error
condition that they need to trap.

Exception Handling
Example - Exception Handling
TRY
 TOTAL += NEW.VALUE
CATCH SYS.PROGRAM.DATATYPE
 …Error action…
END

This example still requires the developer to
identify the error conditions that they need to trap

The SYS.PROGRAM.DATATYPE exception occurs
at any data type error.

Exception Handling
Generic Exception Handling
TRY
 TOTAL += NEW.VALUE
CATCH SYS$ANY
 …Error action…
END

Use of SYS$ANY traps any exception raised by
the statement(s) in the TRY clause.

Exception Handling
Scope of Exception Handlers
TRY
 CALL MYSUB
CATCH SYS$ANY
 …Error action…
END

The exception handler covers all actions in the
TRY clause including exceptions thrown in other
programs.

Exception Handling
Exception Names
Exception names can be long. The names are
formed from a hierarchy of component names.

Any error that would normally cause an abort
with a “non-numeric where numeric required”
message can be trapped as exception
SYS.PROGRAM.DATATYPE.NOT_NUMERIC

Each period separated element of this name
forms an exception group.

Exception Handling
Exception Groups
SYS.PROGRAM.DATATYPE.NOT_NUMERIC

This can be caught as

SYS.PROGRAM.DATATYPE.NOT_NUMERIC

SYS.PROGRAM.DATATYPE

SYS.PROGRAM

SYS

SYS$ANY

Exception Handling
Throwing an Exception
A program throws an exception with

THROW “NAME”
or

THROW “NAME”, QUALIFIER

The qualifier may be any QM data item

All subroutines are discarded back as far as the
exception handler

The DESTROY.OBJECT subroutine of an OO
programming object will be executed.

Exception Handling
Exception Information
@EXCEPTION

The exception name

@EXCEPTION.ORIGIN

Program name and line number

@EXCEPTION.DATA

The qualifier to THROW

Exception Handling
Is there a Handler?
The CAUGHT() function tests whether there is a
handler for a named exception

IF CAUGHT(‘NAME’) THEN …

Exception Handling
The SYS$UNHANDLED Handler

If there is no other handler that catches the
exception, the optional SYS$UNHANDLED
handler is used.

Exception Handling
Exceptions and Aborts
An exception for which there is no handler
results in an abort

An abort will look for a SYS.ABORT exception
handler.

An EXECUTE with TRAPPING.ABORTS forms a
barrier beyond which the search for an exception
handler will not pass.

QUESTIONS?

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50

